Sets of Stochastic Matrices with Converging Products: Bounds and Complexity

نویسندگان

  • Pierre-Yves Chevalier
  • Vladimir V. Gusev
  • Raphaël M. Jungers
  • Julien M. Hendrickx
چکیده

An SIA matrix is a stochastic matrix whose sequence of powers converges to a rank-one matrix. This convergence is desirable in various applications making use of stochastic matrices, such as consensus, distributed optimization and Markov chains. We study the shortest SIA products of sets of matrices. We observe that the shortest SIA product of a set of matrices is usually very short and we provide a first upper bound on the length of the shortest SIA product (if one exists) of any set of stochastic matrices. We also provide an algorithm that decides the existence of an SIA product. When particularized to automata, the problem becomes that of finding periodic synchronizing words, and we develop the consequences of our results in relation with the celebrated Černý conjecture in automata theory. We also investigate links with the related notions of positive-column, Sarymsakov, and scrambling matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic bounds for a single server queue with general retrial times

We propose to use a mathematical method based on stochastic comparisons of Markov chains in order to derive performance indice bounds‎. ‎The main goal of this paper is to investigate various monotonicity properties of a single server retrial queue with first-come-first-served (FCFS) orbit and general retrial times using the stochastic ordering techniques‎.

متن کامل

Efficiency Evaluation and Ranking DMUs in the Presence of Interval Data with Stochastic Bounds

On account of the existence of uncertainty, DEA occasionally faces the situation of imprecise data, especially when a set of DMUs include missing data, ordinal data, interval data, stochastic data, or fuzzy data. Therefore, how to evaluate the efficiency of a set of DMUs in interval environments is a problem worth studying. In this paper, we discussed the new method for evaluation and ranking i...

متن کامل

Polynomial-Time Computation of the Joint Spectral Radius for Some Sets of Nonnegative Matrices

We propose two simple upper bounds for the joint spectral radius of sets of nonnegative matrices. These bounds, the joint column radius and the joint row radius, can be computed in polynomial time as solutions of convex optimization problems. We show that for general matrices these bounds are within a factor 1/n of the exact value, where n is the size of the matrices. Moreover, for sets of matr...

متن کامل

Estimates of covering numbers of convex sets with slowly decaying orthogonal subsets

Covering numbers of precompact symmetric convex subsets of Hilbert spaces are investigated. Lower bounds are derived for sets containing orthogonal subsets with norms of their elements converging to zero sufficiently slowly. When these sets are convex hulls of sets with power-type covering numbers, the bounds are tight. The arguments exploit properties of generalized Hadamard matrices. The resu...

متن کامل

Rank bounds for design matrices with block entries and geometric applications

Design matrices are sparse matrices in which the supports of different columns intersect in a few positions. Such matrices come up naturally when studying problems involving point sets with many collinear triples. In this work we consider design matrices with block (or matrix) entries. Our main result is a lower bound on the rank of such matrices, extending the bounds proven in [BDWY12, DSW14] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.02614  شماره 

صفحات  -

تاریخ انتشار 2017